DEPARTMENT OF THE ARMY TECHNICAL BULLETIN

CALIBRATION PROCEDURE FOR FUNCTION GENERATOR SG-1288/G

Headquarters, Department of the Army, Washington, DC 2 January 2003

Approved for public release; distribution is unlimited

REPORTING OF ERRORS AND RECOMMENDING IMPROVEMENTS

You can improve this manual. If you find any mistakes or if you know of a way to improve these procedures, please let us know. Mail your letter, DA Form 2028 (Recommended Changes to Publications and Blank Forms) directly to Commander, U.S. Army Aviation and Missile Command, ATTN: AMSAM-MMC-MA-NP, Redstone Arsenal, AL 35898-5000. A reply will be furnished to you. You may also provide DA Form 2028 information to AMCOM via e-mail, fax, or the World Wide Web. Our FAX number is: DSN 788-6546 or Commercial 256-842-6546. Our e-mail address is: 2028@redstone.army.mil. Instructions for sending an electronic 2028 may be found at the back of this manual. For the World Wide Web, use: https://amcom2028.redstone.army.mil.

			Paragraph	Page
SECTION	I.	IDENTIFICATION AND DESCRIPTION		
		Test instrument identification	1	
		Forms, records, and reports	2	
		Calibration description	3	
	II.	EQUIPMENT REQUIREMENTS		
		Equipment required	4	
		Accessories required	5	
	III.	CALIBRATION PROCESS		
		Preliminary instructions	6	
		Equipment setup	7	
		Frequency and line stability	8	
		Symmetry	9	
		FM distortion	10	
		Pulse characteristics	11	
		Output distortion	12	
		Sine wave amplitude	13	
		Triangle wave amplitude	14	
		Square wave amplitude	15	
		Dc offset and attenuator	16	
		Final procedure	17	

^{*}This bulletin supersedes TB 9-6625-2233-35, dated 5 January 1993.

SECTION I IDENTIFICATION AND DESCRIPTION

- **1. Test Instrument Identification.** This bulletin provides instructions for the calibration of Function Generator, SG-1288/G. Procurement specification A3056257 was used as the prime data source in compiling these instructions. The equipment being calibrated will be referred to as the TI (test instrument) throughout this bulletin.
 - a. Model Variations. None.
- **b. Time and Technique**. The time required for this calibration is approximately 5 hours, using the dc and low frequency technique.

2. Forms, Records, and Reports

- **a**. Forms, records, and reports required for calibration personnel at all levels are prescribed by TB 750-25.
- **b**. Adjustments to be reported are designated (R) at the end of the sentence in which they appear. When adjustments are in tables, the (R) follows the designated adjustment. Report only those adjustments made and designated with (R).
- **3. Calibration Description.** TI parameters and performance specifications which pertain to this calibration are listed in table 1.

Table 1. Calibration Description

Test instrument	Performance		
parameters	specifications		
Frequency ¹	Range: 2 mHz to 19.99 Hz		
	Accuracy: ±3%		
	Range: 20 Hz to 999.9 kHz		
	Accuracy: ±0.05%		
	Range: 1 to 19.99 MHz		
	Accuracy: ±0.1%		
	Frequency vs line voltage variation (±10%):2		
	Range: <20 Hz		
	Accuracy: ±0.1%		
	Range: >20 Hz		
	Accuracy: ±0.01%		

See footnotes at end of table.

Table 1. Calibration Description - Continued

Table 1. Calibration Description - Continued			
Test instrument Performance			
parameters	specifications		
Sine wave ³	Output amplitude: <10 V p-p		
Total harmonic	Range: 2 mHz to 19.99 Hz		
distortion	Accuracy: <1% (-40 dBc)		
	Range: 20 Hz to 99.9 kHz		
	Accuracy: <0.5% (-46 dBc)		
	Range: 100 to 999.9 kHz		
	Accuracy: <1 % (-40 dBc)		
	Range: 1 to 5.999 MHz		
	Accuracy: <2% (-34 dBc)		
	Range: 6 to 7.999 MHz		
	Accuracy: <2.5% (-32 dBc)		
	Range: 8 to 9.999 MHz		
	Accuracy: <3% (-30 dBc)		
	Range: 10 to 19.99 MHz		
	Accuracy: <4% (-28 dBc)		
	Output amplitude: >l0 V p-p		
	Range: 2 mHz to 19.99 Hz		
	Accuracy: <1 % (-40 dBc)		
	Range: 20 Hz to 99.9 kHz		
	Accuracy: <0.5% (-46 dBc)		
	Range: 100 to 999.9 kHz		
	Accuracy: <1 % (-40 dBc)		
	Range: 1 to 5.999 MHz		
	Accuracy: <2% (-34 dBc)		
	Range: 6 to 7.999 MHz		
	Accuracy: <3% (-30 dBc)		
	Range: 8 to 9.999 MHz		
	Accuracy: <4.5% (-27 dBc)		
	Range: 10 to 19.99 MHz		
	Accuracy: <5% (-26 dBc)		
Sine wave ⁴	Range: <1 MHz		
Non-harmonically	Accuracy: <-60 dBc		
related signals ±200 Hz	Range: 1 to 9.99 MHz		
of output	Accuracy: <-40 dBc		
	Range: 10 to 19.99 MHz		
	Accuracy: <-36 dBc		
Square wave	Rise/falltime: <13 ns		
1	Aberrations: <5%, ±20 mV of p-p amplitude		
	Symmetry: 10 to 90% in 1% steps to 1 MHz linearly decreasing to 50%		
	fixed 20 MHz		
	Accuracy: $\pm (1\% + 20 \text{ ns})$		

See footnotes at end of table.

Table 1. Calibration Description - Continued

	Table 1. Calibration Description - Continued		
Test instrument	Performance		
parameters	specifications		
Triangle wave	Linearity: (10 to 90%): ⁵		
	Range: 2 mHz to 99.99 kHz		
	Accuracy: ±1%		
	Range: 100 kHz to 1.99 MHz		
	Accuracy: ±2%		
	Range: 2 to 5 MHz		
	Accuracy: ± 10%		
	Symmetry: 10 to 90% in 1% steps to 1 MHz linearly decreasing to 5 MHz		
	Accuracy: ±(1 % +20 ns)		
Frequency modulation	Range: 10 MHz carrier, 1 kHz modulation frequency at 100 kHz		
distortion	deviation		
	Accuracy: <-35 dBc		
Sine wave	Range: 2 mHz to 99.99 kHz		
amplitude 6	Range: 1 to 30 V ⁷		
	Accuracy: $\pm (2\% + 10 \text{ m V})$		
	Range: 100 mV to 1 V		
	Accuracy: $\pm (2\% + 2 \text{ mV})$		
	Range: 1 to 100 mV		
	Accuracy: $\pm (2\% + 1 \text{ mV})$		
	Range: 100 kHz to 999.9 kHz		
	Range: 1 to 30 V		
	Accuracy: $\pm (4\% + 10 \text{ mV})$		
	Range: 100 mV to 1 V		
	Accuracy: $\pm (4\% + 2 \text{ mV})$		
	Range: 1 to 100 mV		
	Accuracy: ±(4% +1 mV)		
	Range: 1 to 4.999 MHz		
	Range: 1 to 30 V		
	Accuracy: $\pm (5\% + 10 \text{ mV})$		
	Range: 100 mV to 1 V		
	Accuracy: $\pm (5\% + 2 \text{ mV})$		
	Range: 1 to 100 mV		
	Accuracy: $\pm (5\% + 1 \text{ mV})$		
	Range: 5 to 15.99 MHz		
	Range: 1 to 30 V		
	Accuracy: $\pm (12\% + 10 \text{ mV})$		
	Range: 100 mV to 1 V		
	Accuracy: $\pm (12\% + 2 \text{ mV})$		
	Range: 1 to 100 mV		
	Accuracy: $\pm (12\% + 1 \text{ mV})$		
	Range: 16 to 19.99 MHz		
	Range: 1 to 30 V		
	Accuracy: $\pm (30\% + 10 \text{ mV})$		

See footnotes at end of table.

Table 1. Calibration Description - Continued				
Test instrument Performance				
parameters	specifications			
Sine wave	Range: 100 mV to 1 V			
amplitude ⁶ (cont.)	Accuracy: $\pm (30\% + 2 \text{ mV})$			
	Range: 1 to 100 mV			
	Accuracy: ±(30% +1 mV)			
Square/triangle	Range: 2 mHz to 99.99 kHz			
amplitude	Range: 10 to 30 V			
(all values p-p) ⁶	Accuracy: $\pm (3\% + 20 \text{ mV})$			
	Range: 1 to 9.99 V			
	Accuracy: $\pm (3\% + 10 \text{ mV})$			
	Range: 0.1 to 0.999V			
	Accuracy: $\pm (3\% + 4 \text{ mV})$			
	Range: 10 to 99.9 mV			
	Accuracy: ±(3% +3 mV)			
	Range: 1 to 9.99 mV			
	Accuracy: ±(3% +2 mV)			
	Range: 100 to 999.9 kHz			
	Range: 10 to 30 V ⁵			
	Accuracy: ±(5% +20 mV)			
	Range: 1 to 9.99 V			
	Accuracy: ±(5% +10 mV)			
	Range: 0. 1 to .999 V			
	Accuracy: ±(5% +4 mV) Range: 10 to 99.9 mV			
	9			
	Accuracy: $\pm (5\% + 3 \text{ mV})$			
	Range: 1 to 9.99 mV ⁵			
	Accuracy: ±(5% +2 mV)			
	Range: 1 to 4.999 MHz			
	Range: 10 to 30 V			
	Accuracy: ±(6% +20 mV)			
	Range: 1 to 9.99 V			
	Accuracy: ±(6% +10 mV)			
	Range: 0.1 to 0.999 V			
	Accuracy: ±(6% +4 mV)			
	Range: 10 to 99.9 mV			
	Accuracy: $\pm (6\% + 3 \text{ mV})$			
	Range: 1 to 9.99 mV^5			
	Accuracy: $\pm (6\% + 2 \text{ mV})$			
	Range: 5 to 19.99 MHz (square wave only)			
	Range: 10 to 30 V			
	Accuracy: $\pm (12\% + 20 \text{ mV})$			
Range: 1 to 9.99 V				
Accuracy: $\pm (12\% + 10 \text{ mV})$				
Range: 0.1 to .999 V				
	Accuracy: ±(12% +4 mV)			
See footnotes at end of	table.			

Table 1. Calibration Description - Continued

Test instrument parameters	Performance specifications		
Square/triangle amplitude (all values p-p) ⁶ (Cont)	Range: 10 to 99.9 mV Accuracy: ±(12% +3 mV) Range: 1 to 9.99 mV Accuracy: ±(12% +2 mV)		
Dc offset	Range: -10 to -0.5 and 0.5 to 10 V Accuracy: ±(1 % +20 mV) Range: -1 to -500 and 1 to 500 mV Accuracy: ±(1% +5 mV)		
Sync out	Amplitude: Between 1 and 2.5 V p-p into 50Ω Rise/falltime: <13 ns		

¹Not checked below .02 Hz.

SECTION II EQUIPMENT REQUIREMENTS

- **4. Equipment Required.** Table 2 identifies the specific equipment to be used in this calibration procedure. This equipment is issued with Secondary Transfer Calibration Standards Set AN/GSM-286, AN/GSM-287, or AN/GSM-705. Alternate items may be used by the calibrating activity. The items selected must be verified to perform satisfactorily prior to use and must bear evidence of current calibration. The equipment must meet or exceed the minimum use specifications listed in table 2. The accuracies listed in table 2 provide a four-to-one ratio between the standard and TI.
- **5. Accessories Required.** The accessories required for this calibration are common usage accessories issued as indicated in paragraph **4** above, and are not listed in this calibration procedure. The following peculiar accessory is also required for this calibration: 50Ω feedthrough termination (dummy load); BNC plug to BNC jack, Hewlett-Packard, Model 11048C.

²Verified to ±9.7% in this procedure.

³Not checked below 10 Hz or above 100 kHz.

⁴Checked only at 1 kHz.

⁵Specifications are not verified within this procedure.

⁶Not checked below 50 Hz

 $^{^{7}20.0}$ to 30.0 V p-p circuit accuracy ($\pm 3\% + 10$ mV).

Table 2. Minimum Specifications of Equipment Required

	Minimum use	Manufacturer and model
Common name	specifications	(part number)
		Boonton, Model 1120-S/10
AUDIO ANALYZER	Range: 1 kHz ~1 V ¹	*
	Capability: Distortion measurements	(MIS-35954/2)
	Accuracy: <60 dBc (.1%)	
AUTOTRANSFORMER	Range: 105 to 125 V	General Radio, Type W10MT3AS3
		(7910809) or Ridge, Model 9020A
		(9020A) or Ridge, Model 9020F
		(9020F)
FREQUENCY	Range: 10 mHz to 20 MHz	John Fluke, Model PM6681/656
COUNTER	Accuracy: ±.0125%.	(PM6681/656)
MEASURING	Modulation range:	Hewlett-Packard, Model 8902A
RECEIVER	10 MHz carrier 1 kHz rage	(8902A) w/sensors, Hewlett-
	100 kHz deviation	Packard, Model 11722A (11722A)
	Accuracy:1	and 11792A (11792A), and
	Power range:	microwave converter, model
	26.28 mV to 5.571 V rms	11793A (11793A)
	100 kHz to 4.999 MHz	,
	Accuracy: ±1%	
MULTIMETER	Range: -4.01 to 5.07 V dc	Hewlett-Packard, Model 3458A
	Accuracy: ±0.35%	(3458A)
	Range: 0.00194 to 7.74 V ac	
	50 Hz to 99.99 kHz	
	Accuracy: ±0.5%	
OSCILLOSCOPE	Range: Rise/falltime: <3.5 ns	(OS-291/G)
	Amplitude:	
	Range: 5.8 mV to 19.5 V p-p,	
	Accuracy: ±1.6% (±2%)	
SIGNAL GENERATOR	2	(SG-1219/U)
TUNABLE ACTIVE	Range: 1 kHz, 200 Hz bandpass	Krohn-Hite, Model 3940
FILTER	Accuracy: <72 dBc	(3940)

¹Combined distortion <-47 dBc.

SECTION III CALIBRATION PROCESS

6. Preliminary Instructions

- **a**. The instructions outlined in paragraphs **6** and **7** are preparatory to the calibration process. Personnel should become familiar with the entire bulletin before beginning the calibration.
- ${f b}$. Items of equipment used in this procedure are referenced within the text by common name as listed in table 2.
- **c**. Unless otherwise specified, verify the results of each test and, whenever the test requirement is not met, take corrective action before continuing with the calibration.

²Used as local oscillators for signal generator workstation.

Adjustments required to calibrate the TI are included in this procedure. Additional maintenance information is contained in TM 11-6625-3198-40 for this TI.

d. Unless otherwise specified, all controls and control settings refer to the TI.

7. Equipment Setup

WARNING

HIGH VOLTAGE is used or exposed during the performance of this calibration. DEATH ON CONTACT may result if personnel fail to observe safety precautions. REDUCE OUTPUT(S) to minimum after each step within the performance check where applicable.

NOTE

Replace the RAM protection battery with a fresh one prior to the calibration attempt. Battery NSN is 6135-01-320-4815.

NOTE

Due to TI recall of previous setups, it may be necessary to press a multiple choice pushbutton more than one time to obtain the needed parameter.

- **a**. Connect TI to autotransformer.
- **b**. Connect autotransformer to a 115 V ac source and adjust for a 115 V output.
- **c**. Set **POWER** switch to **ON** and allow 25 minutes for TI to warm up and stabilize.
- **d**. Press pushbuttons and verify display indications as listed in (1) through (11) below:
 - (1) **RESET** indicates reset (V1.02).
 - (2) **FREQUENCY** indicates **FREQ 1 kHz**.
 - (3) **AMPLITUDE** indicates **AMPL 5 VPP**.
 - (4) **DISPLAY** indicates **INTENSITY 16**.
 - (5) **SYMMETRY** indicates **SYMM 50 PCT**.
 - (6) **PHASE** indicates **PHASE 0 DEG**.
 - (7) **OFFSET** indicates **DCOFF 0 VDC**.
 - (8) **MODULATION START/STOP** indicates **START 2 HZ**.
 - (9) **MODULATION START/STOP** indicates **STOP 2 KHZ**.
 - (10) **MODULATION TIME** indicates **SWPTIME 1 SEC**.
 - (11) **MODULATION TIME** indicates **SWPRATE 1 HZ**.

8. Frequency and Line Stability

- (1) Connect **SYNC OUT** output to frequency counter using a 50Ω feedthrough termination.
 - (2) Press pushbuttons as listed in (a) through (e) below:
- (a) **CALIBRATE** (allow enough time to complete and verify **AUTO-CALIBRATED** is displayed).
 - (b) **RESET**.
 - (c) **FREQUENCY**.
 - (d) **19**.
 - (e) **ENTER**.
 - (3) Frequency counter will indicate between 18.43 and 19.57 Hz.
 - (4) Record frequency counter indication.
 - (5) Adjust autotransformer for a 108 V output.
- (6) Frequency counter will display within 0.1 percent of frequency recorded in (4) above.
 - (7) Adjust autotransformer for a 125 V output and repeat (6) above.
 - (8) Adjust autotransformer for 115 V output.
- (9) Set TI for an output frequency of 1 MHz. Frequency counter will indicate between 999 and $1001\ kHz$.
 - (10) Record frequency counter indication.
 - (11) Adjust autotransformer for a 125 V output.
- (12) Frequency counter will display within 0.01 percent of frequency recorded in (10) above.
 - (13) Adjust autotransformer for a 105 V output and repeat (12) above.
 - (14) Adjust autotransformer for a 115 V output.
- (15) Repeat measurements for frequencies and frequency counter indications listed in table 3.

Table 3. Output Frequency Test

Test instrument	Frequency counter display indications		
frequency	Min	Max	
19.00 MHz	18.981010 MHz	19.019000 MHz	
900.0 kHz	899.55 kHz	900.45 kHz	
20.0 Hz	19.99 Hz	20.01 Hz	
19.0 Hz	18.43 Hz	19.57 Hz	
10.0 Hz	9.70	10.30 Hz	
	Hz		
1.0 Hz ¹	970.87 ms	1030.9 ms	
0.1 Hz	9.7087 s	10.309 s	
0.02 Hz	48.544 s	51.546 s	

 $^{^{1}\}mbox{Set}$ frequency counter for time measurement, DC coupling, single ON, Holdoff ON, and press restart to begin measurement.

b. Adjustments. No adjustments can be made.

9. Symmetry

a. Performance Check

- (1) Connect **SYNC OUT** output to oscilloscope **CH1** input.
- (2) Press pushbuttons as listed in (a) through (e) below:
- (a) **CALIBRATE** (allow enough time to complete and verify **AUTO-CALIBRATED** is displayed).
 - (b) **RESET**.
 - (c) **SYMMETRY**.
 - (d) **10**.
 - (e) **ENTER**.
- (3) Set oscilloscope to display at least two waveform cycles at a convenient amplitude, to measure duty cycle and set **COUPLING/INVERT** on.
 - (4) Oscilloscope duty cycle will display between 9.898 and 10.102 %.
- (5) Repeat technique used in (2)(d) and (e) and (3) and (4) above, substituting control settings and frequency counter indications listed in table 4.
 - **b. Adjustments**. No adjustments can be made.

Table 4. Symmetry

		J	
		Oscilloscope duty cycle	
Test instrument		display indications (μs)	
Pushbuttons	Symmetry		
pressed	(displayed value)	Min	Max
2, 0, Enter	20 PCT	19.798	20.202
3, 0, Enter	30 PCT	29.698	30.302
4, 0, Enter	40 PCT	39.598	40.402
5, 0, Enter	50 PCT	49.498	50.502
6, 0, Enter	60 PCT	59.398	60.602
7, 0, Enter	70 PCT	69.298	70.702
8, 0, Enter	80 PCT	79.198	80.802
9, 0, Enter	90 PCT	89.098	90.902

10.FM Distortion

- (1) Press pushbuttons as listed in (a) through (k) below:
- (a) ${f CALIBRATE}$ (allow enough time to complete and verify ${f AUTO-CALIBRATED}$ is displayed).

- (b) **RESET**.
- (c) **FREQUENCY**.
- (d) **1**.
- (e) **EXP**.
- (f) **7**.
- (g) ENTER
- (h) AMPLITUDE
- (i) .15
- (j) ENTER
- (k) MODULATION FM/VCF
- (2) Connect equipment as shown in figure 1.

NOTE

Ensure audio analyzer and measuring receiver modulation analyzer are in **LOCAL** mode.

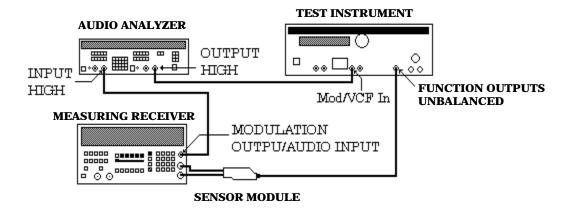


Figure 1. FM distortion equipment hookup.

- $\,$ (3) Adjust audio analyzer frequency for 1 kHz and output level (approximately 36 mV) to obtain 100 kHz frequency deviation indication on the measuring receiver modulation analyzer.
- (4) Measure distortion using the audio analyzer. Verify indicated distortion is <- 35 dBc.
 - (5) Disconnect audio analyzer from **MOD/VCF IN**.
 - **b. Adjustments**. No adjustments can be made.

11. Pulse Characteristics

a. Performance Check

- (1) Press pushbuttons as listed in (a) through (k) below:
- (a) **CALIBRATE** (allow enough time to complete and verify **AUTO-CALIBRATED** is displayed).
 - (b) **RESET**.
 - (c) **FREQUENCY**.
 - (d) **1**.
 - (e) **EXP**.
 - (f) **6**.
 - (g) **ENTER**.
 - (h) **AMPLITUDE**.
 - (i) **5**.
 - (j) ENTER.
 - (k) **FUNCTION 1** (square wave).
 - (2) Connect TI function outputs **UNBALANCED** to oscilloscope **CH1** input.
- (3) Measure rise- and falltime of displayed square wave using standard technique. Rise- and falltime will be <13 ns.
- (4) Measure positive and negative transition aberrations of displayed square wave. If peak-to-peak aberrations are not <270 mV, perform **b** below.
 - (5) Remove cable from **UNBALANCED** and reconnect to **SYNC OUT.**
 - (6) Repeat technique of (3) above for **SYNC OUT** signal.

b. Adjustments

- (1) Set **POWER** switch to **OFF**.
- (2) Remove top cover.

NOTE

Keep top cover and shield in place during this procedure except when necessary to make an internal adjustment.

- (3) Set **POWER** switch to **ON**.
- (4) Press and hold (down) A2SW1 (fig. 2) and then press **CALIBRATE** pushbutton.
- (5) Observe display indication of **WVTK SN X, XXX, XXX** or **WVTK SN 0.**
- (6) Press **CURSOR** i pushbutton and allow enough time for calibrating mode to complete.

- (7) Observe display indication of **ARMY SN X, XXX** or **ARMY SN 0.**
- (8) Repeat (6) above observing display indication of **PEAKING C22.**
- (9) Connect UNBALANCED output to oscilloscope input, using cable and a 50Ω feedthrough termination.
- (10) Adjust A3C22 (fig. 3) for a peak-to-peak aberration of less than 270 mV displayed on oscilloscope (R).
- (11) Press ${f CALIBRATE}$ pushbutton and verify display indicates ${f CALIBRATION}$ ${f OFF.}$
 - (12) Disconnect equipment setup and reinstall top cover.

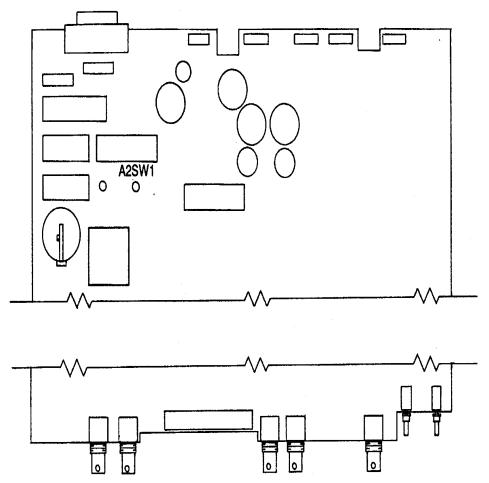


Figure 2. A2 motherboard.

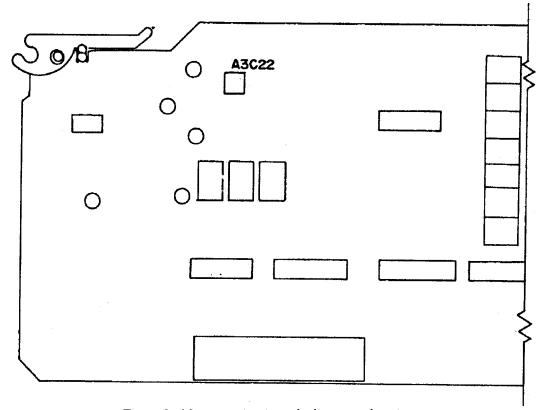


Figure 3. A3 output circuit card adjustment location.

12. Output Distortion

- (1) Connect TI functions outputs **UNBALANCED** to audio analyzer **INPUT HIGH** using a 50Ω feedthrough termination.
- (2) Press **CALIBRATION** pushbutton (allow enough time to complete and verify **AUTOCALIBRATED** is displayed) and then press **RESET** pushbutton.
- (3) Press **FREQUENCY** pushbutton and enter **1000**. Measure distortion using standard distortion measurement technique. If total harmonic distortion is not <0.5% (-46 dBc), perform **b** below.
 - (4) Repeat (3) above substituting values from <10 V section of table 5.
- (5) Press **AMPLITUDE** (until **VPP** is displayed) and enter **15.0**. Repeat (3) above substituting values from ≥ 10 V section of table 5.

Test instrume	nt Maximum total		
frequency setti	ngs harmonic distortion		
<10 V			
1.00 kHz	<0.5% (-46 dBc)		
20.00 Hz	<0.5% (-46 dBc)		
99.9 kHz	<0.5% (-46 dBc)		
100.0 kHz	<1% (-40 dBc)		
≥10 V			
1.00 kHz	<0.5% (-46 dBc)		

Table 5. Sine Wave Distortion

(6) Reduce outputs to minimum. Disconnect cable and 50Ω feedthrough termination from the audio analyzer **INPUT HIGH** and connect to tunable active filter input.

<0.5% (-46 dBc)

<0.5% (-46 dBc)

<1% (-40 dBc)

- (7) Connect tunable active filter output to the audio analyzer **INPUT HIGH**.
- (8) Press pushbuttons as listed in (a) through (h) below:

Hz

kHz

kHz

20.00

99.9

100.0

- (a) **FREQUENCY**.
- (b) **1**.
- (c) **EXP**.
- (d) **3**.
- (e) **ENTER**.
- (f) **AMPLITUDE**.
- (g) **5**.
- (h) ENTER.
- (9) Set tunable active filter for a bandpass of 800 to 1200 Hz and repeat (3) above substituting a distortion indication of < .1% (-60 dBc).
 - (10) Disconnect equipment setup.

b. Adjustments

- (1) Position **POWER** switch to **OFF**.
- (2) Remove top cover.

NOTE

Keep top cover and shield in place during this procedure except when necessary to make an internal adjustment.

- (3) Position **POWER** switch to **ON**.
- (4) Press and hold (down) A2SW1 (fig. 2) and then press ${\bf CALIBRATE}$ pushbutton.
- (5) Press **CURSOR** i pushbutton three times and observe display indication of **R33, 97, 64, VSINE XXX.**

- (6) Set TI for 5 V p-p output at 9.8 kHz.
- (7) Connect **SYNC OUT** output to oscilloscope trigger input.
- (8) Connect audio analyzer monitor output (rear panel) to oscilloscope vertical input and set oscilloscope controls for display of peak distortion.
 - (9) Adjust R33 (fig. 4) until waveform peaks are clearly visible in the residue.
- (10) Adjust R97 (fig. 4) until waveform peaks are symmetrical, above and below the average value of the residue signal.
 - (11) Adjust R33 (fig. 4) until peaks disappear back into the residue.
- (12) Observe the overall ripple in the residue in the area of the waveform zero crossings as displayed on the oscilloscope. Adjust **CONTROL** knob cw for clearly visible peaks displayed on oscilloscope and repeat (11) above.

NOTE

If the overall ripple has decreased, continue the test of (12) above turning the **CONTROL** knob clockwise. If the overall ripple has increased, continue technique of (12) above turning **CONTROL** knob counterclockwise.

- (13) Repeat technique of (11) and (12) above until minimum overall ripple is displayed on oscilloscope.
- (14) Connect MULTIMETER + lead to TP 10 (fig. 4) and lead to TP 11 (fig. 4) and adjust R64 (fig. 4) for display of <1~mV dc.

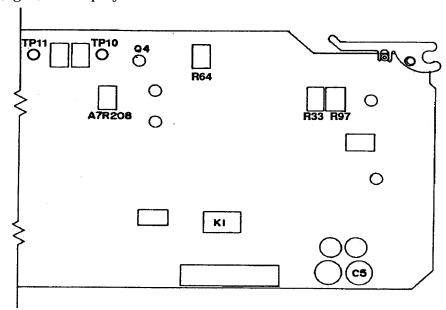


Figure 4. A7 phase lock loop circuit card adjustment location.

(15) Press **CALIBRATE** pushbutton and verify display indicates **CALIBRATION OFF.**

13. Sine Wave Amplitude

a. Performance Check

- (1) Connect **UNBALANCED** output to multimeter input using a 50Ω feedthrough termination.
 - (2) Press pushbuttons as listed in (a) through (h) below:
- (a) **CALIBRATE** (allow enough time to complete and verify **AUTO-CALIBRATED** is displayed).
 - (b) **RESET**.
 - (c) **AMPLITUDE**.
 - (d) **1.11**.
 - (e) ENTER.
 - (f) **FREQUENCY**.
 - (g) **50**
 - (h) ENTER.
- (3) Multimeter will indicate between minimum and maximum values listed in table 6.
- (4) Repeat technique of (2)(c) through (h), and (3) above substituting settings and indications listed in table 6.

Table 6. Sine Wave Amplitude Accuracy 50 Hz to 99.99 kHz

Test instrument		Multimeter rms indications (V)		
Freque	ency	Output	Min	Max
	-	(V p-p)		
50	Hz	1.11	0.381	0.404
50	Hz	.099	.0339	.0361
50	Hz	.2	.06858	.07282
50	Hz	.999	.345	.361
50	Hz	2	.689	.725
50	Hz	15	5.14	5.46
99.9	kHz	1.11	0.381	0.404
99.9	kHz	.099	.0339	.0361
99.9	kHz	.2	.06858	.07282
99.9	kHz	.999	.345	.361
99.9	kHz	2	.689	.725
99.9	kHz	15	5.14	5.46

(5) Reduce TI output to minimum. Set the measuring receiver to measure power.

- (6) Connect measuring receiver power sensor to **CALIBRATOR RF POWER** connector and zero and cal the measuring receiver. Then disconnect measuring receiver power sensor from **CALIBRATOR RF POWER** connector.
 - (7) Set the measuring receiver to measure power in millivolts.
- (8) Disconnect TI **UNBALANCED** output from multimeter and connect **UNBALANCED** output to measuring receiver power sensor (do not use the 50Ω feedthrough termination).
 - (9) Press pushbuttons as listed in (a) through (h) below:
 - (a) **FREQUENCY**.
 - (b) **100**.
 - (c) **EXP**.
 - (d) **3**.
 - (e) **ENTER**.
 - (f) **AMPLITUDE**.
 - (g) **.099**.
 - (h) ENTER.
- (10) Measuring receiver will indicate within minimum maximum limits as listed in table 7.
- (11) Repeat technique of (9)(a) through (h) and (10) above substituting settings and indications listed in table 7.

Table 7. Sine Wave Amplitude Accuracy 100 kHz to 4.999 MHz

	-	Measuring receiver indications	
Test instrument		(mV)	
	Output		
Frequency	(V p-p)	Min	Max
100 kHz	.099	33.2	36.8
100 kHz	.2	67.17	74.24
100 kHz	.999	338	368
100 kHz	2	675	739
100 kHz	15	5086	5518
999.9 kHz	.099	33.2	36.8
999.9 kHz	.2	67.17	74.24
999.9 kHz	.999	338	368
999.9 kHz	2	675	739
999.9 kHz	15	5086	5518
1 MHz	.099	32.9	37.1
1 MHz	.2	66.46	74.94
1 MHz	.999	335	372
1 MHz	2	668	746

Table 7. Sine Wave Amplitude Accuracy 100 kHz to 4.999 MHz - Continued

Table 1. Blile Wave Implicate Recardey 100 Mile to 1:000 Mile Continued			TIE Continued
Test		Measuring receiver indications	
instru	ıment	(mV	/)
	Output	Min	Max
Frequency	(V p-p)		
1 MHz	15	5034	5571
4.999 MHz	.099	32.9	37.1
4.999 MHz	.2	66.46	74.94
4.999 MHz	.999	335	372
4.999 MHz	2	668	746
4.999 MHz	15	5034	5571

- (12) Reduce TI output to minimum. Disconnect **UNBALANCED** output from measuring receiver power sensor and connect **UNBALANCED** output to oscilloscope **CH1** input using a 50Ω feedthrough termination.
 - (13) Press pushbuttons as listed in (a) through (h) below:
 - (a) **FREQUENCY**.
 - (b) **5**.
 - (c) **EXP**.
 - (d) **6**.
 - (e) **ENTER**.
 - (f) **AMPLITUDE**.
 - (g) **.099**.
 - (h) **ENTER**.
 - (14) Position oscilloscope controls as listed in (a) through (g) below:
 - (a) **COUPLING/INVERT 50 OHM OFF**.
 - **(b) SETUP AUTO**.
 - (c) **SETUP MEASURE MEAS TYPE PK to PK ON**.
 - (d) BANDWIDTH FULL SMOOTH -ON.
 - (e) STORAGE ACQUIRE NORMAL REPET ON.
- (f) **CH1 VOLTS/DIV** for a convenient display (approximately 4 or 5 divisions).
 - (g) **A** and **B SEC/DIV** for a convenient display (approximately 4 or 5 cycles).
- (15) Oscilloscope will indicate within minimum maximum limits as listed in table 8.
- (16) Repeat technique of (13), (14)(f) and (g) and (15) above substituting settings and indications listed in table 8.

Table 8. Sine Wave Amplitude Accuracy 5 MHz to 19.99 MHz

Test instrument		Oscilloscope indications (V p-p)	
1 est ins	trument	(V p	-p)
Frequency	Output	Min	Max
1 0	(V p-p)		
5 MHz	.099	.086	.112
5 MHz	.2	.174	.226
5 MHz	.999	.877	1.12
5 MHz	2	1.75	2.25
5 MHz	15	13.2	16.8
15.99 MHz	.099	.086	.112
15.99 MHz	.2	.174	.226
15.9MHz	.999	.877	1.12
15.99 MHz	2	1.75	2.25
15.99 MHz	15	13.2	16.8
19.99 MHz	.099	.068	.130
19.99 MHz	.2	.138	.262
19.99 MHz	.999	.697	1.30
19.99 MHz	2	1.39	2.61
19.99 MHz	15	10.5	19.5

b. Adjustments. No adjustments can be made.

14. Triangle Wave Amplitude

- (1) Connect **UNBALANCED** output to multimeter input using 50Ω feedthrough termination.
 - (2) Press pushbuttons as listed in (a) through (i) below:
- (a) Calibrate (allow enough time to complete and verify **AUTOCALIBRATED** is displayed)
 - (b) **RESET**.
 - (c) **FUNCTION** (triangle wave).
 - (d) **AMPLITUDE**.
 - (e) .**009**.
 - (f) ENTER.
 - (g) **FREQUENCY**.
 - (h) **50**.
 - (i) **ENTER**.
 - (3) Multimeter will indicate between 1.94 and 3.25 mV rms.
- (4) Repeat technique of (2)(c) through (i), and (3) above substituting settings and indications listed in table 9.

Table 9. Triangle Wave Amplitude Accuracy 50 Hz to 99.99 kHz

Test instrument		Multimeter RMS indications	
Frequency	Output	Multimeter RMS indication	
(Hz)	(V p-p)	Min	Max
50	.01	1.93 mV	3.84 mV
50	.099	26.9 mV	30.3 mV
50	.1	26.8 mV	30.9 mV
50	.999	.279 V	.298 V
50	1	.277 V	.300 V
50	9.99	2.79 V	2.97 V
50	10	2.79 V	2.98 V
50	15	4.19 V	4.47 V
99.99 k	.01	1.93 mV	3.84 mV
99.99 k	.099	26.9 mV	30.3 mV
99.99 k	.1	26.8 mV	30.9 mV
99.99 k	.999	.279 V	.298 V
99.99 k	1	.277 V	.300 V
99.99 k	9.99	2.79 V	2.97 V
99.99 k	10	2.79 V	2.98 V
99.99 k	15	4.19 V	4.47 V

- (5) Reduce TI output to minimum. Set the measuring receiver to measure power.
- (6) Connect measuring receiver power sensor to **CALIBRATOR RF POWER** connector and zero and cal the power meter. Then disconnect measuring receiver power sensor from **CALIBRATOR RF POWER** connector.
 - (7) Set the measuring receiver to measure power in millivolts.
- (8) Disconnect **UNBALANCED** output from multimeter and connect **UNBALANCED** output to measuring receiver power sensor (do not use the 50Ω feedthrough termination).
 - (9) Press pushbuttons as listed in (a) through (h) below:
 - (a) **FREQUENCY**.
 - (b) **100**.
 - (c) **EXP**.
 - (d) **3**.
 - (e) **ENTER**.
 - (f) **AMPLITUDE**.
 - (g) **.099**.
 - (h) **ENTER**.
- (10) Measuring receiver power meter will indicate within minimum/maximum limits as listed in table 10.

Table 10.	Triangle	Wave Am	plitude Accui	racy 100 kHz t	o 4.999 MHz

	est instrument Measuring receiver indic		iver indications
Frequency	Output	(mV)	
(Hz)	(V p-p)	Min	Max
100 k	.099	26.28	30.87
100 k	.1	26.27	31.47
100 k	.999	272.8	304.0
100 k	1	271.4	306.0
999.9 k	.099	26.28	30.87
999.9 k	.1	26.27	31.47
999.9 k	.999	272.8	304.0
999.9 k	1	271.4	306.0
1 M	.099	26.00	31.16
1 M	.1	25.98	31.75
1 M	.999	270.0	306.8
1 M	1	268.5	308.9
4.999 M	.099	26.00	31.16
4.999 M	.1	25.98	31.75
4.999 M	.999	270.0	306.8
4.999 M	1	268.5	308.9

- (11) Repeat technique of (9)(a) through (h) and (10) above substituting settings and indications listed in table 10.
- (12) Reduce TI output to minimum. Disconnect **UNBALANCED** output from measuring receiver power sensor and connect **UNBALANCED** output to oscilloscope **CH1** input using a 50Ω feedthrough termination.
 - (13) Press pushbuttons as listed in (a) through (h) below:
 - (a) **FREQUENCY**.
 - (b) **1**.
 - (c) **EXP**.
 - (d) **6**.
 - (e) **ENTER**.
 - (f) AMPLITUDE.
 - (g) **9.99**.
 - (h) ENTER.
 - (14) Position oscilloscope controls as listed in (a) through (g) below:
 - (a) **COUPLING/INVERT 50 OHM OFF**.
 - (b) **SETUP AUTO**.
 - (c) **SETUP MEASURE MEAS TYPE PK to PK ON**.
 - (d) **BANDWIDTH FULL SMOOTH -ON**.

- (e) STORAGE ACQUIRE NORMAL REPET ON.
- (f) **CH1 VOLTS/DIV** for a convenient display (approximately 4 or 5 divisions).
 - (g) **A** and **B SEC/DIV** for a convenient display (approximately 4 or 5 cycles).
- (15) Oscilloscope will indicate within minimum/maximum limits as listed in table 11.
- (16) Repeat technique of (13)(a) through (h), (14)(f) and (g), and (15) above substituting settings and indications listed in table 11.

Table 11. Triangle Wave Amplitude 1 to 4.999 MHz

Frequency	Output	Oscilloscope indications (V p-p)	
(Hz)	(V p-p)	Min	Max
1 M	9.99	9.38	10.6
1 M	10	9.38	10.6
1 M	15	14.1	15.9
4.999 M	9.99	9.38	10.6
4.999 M	10	9.38	10.6
4.999 M	15	14.1	15.9

b. Adjustments. No adjustments can be made.

15. Square Wave Amplitude

- (1) Connect **UNBALANCED** output to multimeter input using 50Ω feedthrough termination.
 - (2) Press pushbuttons as listed in (a) through (i) below:
- (a) Calibrate (allow enough time to complete and verify **AUTOCALIBRATED** is displayed).
 - (b) **RESET**.
 - (c) **FUNCTION** (square wave).
 - (d) **AMPLITUDE**.
 - (e) .**009**.
 - (f) ENTER.
 - (g) **FREQUENCY**.
 - (h) **50**.
 - (i) **ENTER**.
 - (3) Multimeter will indicate between 3.37 and 5.64 mV rms.
- (4) Repeat technique of (2)(c) through (i), and (3) above substituting settings and indications listed in table 12.

Table 12. Square Wave Amplitude Accuracy 50 Hz to 99.99 kHz

Test instrument		Multimeter	
Frequency	Output	rms indications	
(Hz)	(V p-p)	Min	Max
50	.01	3.35 mV	6.65 mV
50	.099	46 5 mV	52.5 mV
50	.1	46.5 mV	53.5 mV
50	.999	.483 V	.516 V
50	1	.480 V	.520 V
50	9.99	4.84 V	5.15 V
50	10	4.84 V	5.16 V
50	15	7.27 V	7.74 V
99.9 k	.01	3.35 mV	6.65 mV
99.9 k	.099	46 5 mV	52.5 mV
99.9 k	.1	46.5 mV	53.5 mV
99.9 k	.999	.483 V	.516 V
99.9 k	1	.480 V	.520 V
99.9 k	9.99	4.84 V	5.15 V
99.9 k	10	4.84 V	5.16 V
99.9 k	15	7.27 V	7.74
			V

- (5) Reduce TI output to minimum. Set the measuring receiver to measure power.
- (6) Connect measuring receiver power sensor to **CALIBRATOR RF POWER** connector and zero and cal the power meter. Then disconnect measuring receiver power sensor from **CALIBRATOR RF POWER** connector.
 - (7) Set the measuring receiver to measure power in millivolts.
- (8) Disconnect **UNBALANCED** output from multimeter and connect **UNBALANCED** output to measuring receiver power sensor (do not use the 50Ω feedthrough termination).
 - (9) Press pushbuttons as listed in (a) through (h) below:
 - (a) **FREQUENCY**.
 - (b) **100**.
 - (c) **EXP**.
 - (d) **3**.
 - (e) **ENTER**.
 - (f) **AMPLITUDE**.
 - (g) **.099**.
 - (h) **ENTER**.
- (10) Measuring receiver power meter will indicate within minimum/maximum limits as listed in table 13.
- (11) Repeat technique of (9)(a) through (h) and (10) above substituting settings and indications listed in table 13.

Table 13. Square Wave Amplitude 100 kHz to 4.999 MHz

Tuble 10: Equale Wave Implicate 100 MHz to 1:000 MHz			
		Measuring receiver indication	
Frequency	Output	(mV)	
(Hz)	(V p-p)	Min	Max
100 k	.099	45.52	53.48
100 k	.1	45.50	54.50
100 k	.999	472.5	526.5
100 k	1	470.0	530.0
999.9 k	.099	45.52	53.48
999.9 k	.1	45.50	54.50
999.9 k	.999	472.5	526.5
999.9 k	1	470.0	530.0
1 M	.099	45.03	53.97
1 M	.1	45.00	55.00
4.999 M	.099	45.03	53.97
4.999 M	.1	45.00	55.00

- (12) Reduce TI output to minimum. Disconnect **UNBALANCED** output from measuring receiver power sensor and connect **UNBALANCED** output to oscilloscope **CH1** input using a 50Ω feedthrough termination.
 - (13) Press pushbuttons as listed in (a) through (h) below:
 - (a) **FREQUENCY**.
 - (b) **1**.
 - (c) **EXP**.
 - (d) **6**.
 - (e) **ENTER**.
 - (f) **AMPLITUDE**.
 - (g) **.999**.
 - (h) **ENTER**.
 - (14) Position oscilloscope controls as listed in (a) through (g) below:
 - (a) **COUPLING/INVERT 50 OHM OFF**.
 - (b) **SETUP AUTO**.
 - (c) **SETUP MEASURE MEAS TYPE PK to PK ON**.
 - (d) **BANDWIDTH FULL SMOOTH -ON**.
 - (e) STORAGE ACQUIRE NORMAL REPET ON.
- (f) CH1 VOLTS/DIV for a convenient display (approximately 4 or 5 divisions).
 - (g) **A** and **B SEC/DIV** for a convenient display (approximately 4 or 5 cycles).
- (15) Oscilloscope will indicate within minimum/maximum limits as listed in table 14.
- (16) Repeat technique of (13)(a) through (h), (14)(f) and (g) and (15) above substituting settings and indications listed in table 14.

Table 14. Square Wave Amplitude 1 to 19.99 MHz

Octiliarana in diagram			
Frequency	Output	Oscilloscope indications (V p-p)	
	_		
(Hz)	(V p-p)	Min	Max
1 M	.999	.935 mV	1.06 V
1 M	1	.930 mV	1.07 V
1 M	9.99	9.38 V	10.6 V
1 M	10	9.38 V	10.6 V
1 M	15	14.1 V	15.9 V
4.999 M	.999	.935 mV	1.06 V
4.999 M	1	.930 mV	1.07 V
4.999 M	9.99	9.38 V	10.6 V
4.999 M	10	9.38 V	10.6 V
4.999 M	15	14.1 V	15.9 V
5 M	.009	5.92 mV	12.1 mV
5 M	.01	5.8 mV	14.2 mV
5 M	.099	84 mV	114 mV
5 M	.1	84 mV	116 mV
5 M	.999	875 mV	1.12 V
5 M	1	870 mV	1.13 V
5 M	9.99	8.78 V	11.2 V
5 M	10	8.78 V	11.2 V
5 M	15	13.2 V	16.8 V
19.99 M	.009	5.92 mV	12.1 mV
19.99 M	.01	5.8 mV	14.2 mV
19.99 M	.099	84 mV	114 mV
19.99 M	.1	84 mV	116 mV
19.99 M	.999	875 mV	1.12 V
19.99 M	1	870 mV	1.13 V
19.99 M	9.99	8.78 V	11.2 V
19.99 M	10	8.78 V	11.2 V
19.99 M	15	13.2 V	16.8 V

- (17) Reduce TI output to minimum.
- **b. Adjustments**. No adjustments can be made.

16.Dc Offset and Attenuator

- (1) Connect UNBALANCED output to multimeter using 50Ω feedthrough termination.
 - (2) Press pushbuttons as listed in (a) through (g) below:
- (a) ${f CALIBRATE}$ (allow enough time to complete and verify ${f AUTO-CALIBRATED}$ is displayed).

- (b) **FUNCTION OUTPUTS 50** (pressed).
- (c) **RESET**.
- (d) **FUNCTION DC**.
- (e) **OFFSET**.
- (f) **5**.
- (g) ENTER.
- (3) Observe multimeter indication between 4.930 and 5.070 V dc.
- (4) Repeat technique of (2)(f) through (g) and (3) above for control settings listed in table 15 below. Digital voltmeter will indicate between specified limits.
 - (5) Reduce output to minimum and disconnect equipment setup.
 - **b. Adjustments**. No adjustments can be made.

Table 15. Dc Offset Accuracy

	Multimeter indications		
Offset voltage	(V	dc)	
(V)	Min	Max	
2	1.96	2.04	
1	.97	1.03	
.501	.47599	.52601	
.499	.48901	.50899	
.25	.2425	.2575	
.1	94.0 mV	106.0 mV	
.05	44.5 mV	55.5 mV	
.025	19.75 mV	30.25 mV	
.01	4.9 mV	15.1 mV	
.005	05 mV	10.05 mV	
.003	-2.03 mV	8.03 mV	

17. Final Procedure

- **a**. Deenergize and disconnect all equipment.
- **b**. Annotate and affix DA label/form in accordance with TB 750-25.

THESE ARE THE INSTRUCTIONS FOR SENDING AN ELECTRONIC 2028

The following format must be used if submitting an electronic 2028. The subject line must be exactly the same and all fields must be included; however, only the following fields are mandatory: 1, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, and 27.

From: "Whomever" whomever@avma27.army.mil

To: <u>2028@redstone.army.mil</u>

Subject: DA Form 2028
1. **From**: Joe Smith

2. Unit: Home

Address: 4300 Park
 City: Hometown

5. **St**: MO6. **Zip**: 77777

7. **Date Sent**: 19-Oct-93

8. **Pub No**: TB 9-6625-xxxx-35

9. **Pub Title**: Calibration Procedure for ...

10. **Publication Date**:

11. Change Number:

12. **Submitted Rank**: MSG 13. **Sumitter Fname**: Joe 14. **Submitter Mname**: T

15. **Submitter Uname**: Smith

16. **Submitter Phone**: (123) 123-1234

17. **Problem**: 1

18. Page: 2

19. Paragraph: 3

20 Line: 4 21. NSN: 5

22. Reference: 6

23. Figure: 7

24. Table: 8

25. Item: 9

26. Total: 123

27: **Text**:

This is the text for the problem below line 27.

By Order of the Secretary of the Army:

ERIC K. SHINSEKI General, United States Army Chief of Staff

OFFICIAL:

Joel B. Hulder JOEL B. HUDSON Administrative Assistant to the Secretary of the Army

0231603

Distribution:

To be distributed in accordance with initial distribution number (IDN) 344361, requirements for calibration procedure TB-9-6625-2233-35.

PIN: 047940-000